Hermite-Galerkin spectral method for Schrödinger-type systems on unbounded domains: conservation of invariants

发布者:王秋枫发布时间:2025-10-16浏览次数:10

学术报告

题目: Hermite-Galerkin spectral method for Schrödinger-type systems on unbounded domains: conservation of invariants

报告人:郭士民 教授  西安交通大学

摘要: In this talk, we shall consider the Hermite-Galerkin spectral method for the Schrödinger equation with wave operator. First, we construct the finite difference/spectral method for the d-dimensional Schrödinger equation with wave operator to conserve three of the most important invariants, namely, mass, energy, and momentum. Regarding the mass and momentum conservation laws as d+1 globally physical constraints, we carefully combine the exponential scalar auxiliary variable (ESAV) approach and the Lagrange multiplier approach to construct the ESAV-Lagrange multiplier reformulation of the equation, thereby preserving the energy conservation law. Secondly, for the nonlocal-in-space Klein-Gordon-Schrödinger system in multi- dimensional unbounded domains, we use the Hermite-Galerkin spectral method with a scaling factor for spatial approximation and the Crank-Nicolson scheme for temporal discretization, which conserves the nonlocal energy at the fully discrete level.

时间20251018日(星期六)上午9:30-10:30

地点:徐汇校区西部3号楼332

上海师范大学数理学院

                                       20251014



报告人简介:郭士民,西安交通大学教授、博士生导师,主要研究方向为计算等离子体物理、高精度数值算法;在SIAM Journal on Scientific ComputingJournal of Computational Physics等期刊上发表多篇学术论文,ESI高被引论文2篇;主持国家级青年人才类项目、国家自然科学基金面上项目、国家重点研发计划子课题、陕西省杰出青年基金等多项科研项目;荣获陕西省自然科学奖二等奖、陕西省优秀博士学位论文奖等奖励。