学术报告
报告题目:On effective SPR properties for surface diffeomorphisms
and homoclinic relation for ergodic hyperbolic measures
报告人: 杨大伟 教授 苏州大学
报告摘要:Strong positive recurrence (SPR) was first studied for countable Markov shift in dynamical system. SPR can imply very nice statistical properties, such as exponential decay of correlations.Buzzi-Crovisier-Sarig recently defined this notion for surface diffeomorphisms and proved measure of maximal entropy (MME) of C^\infty surface diffeomorphism admit the SPR property. Moreover, they proved the coding of MME for surface diffeomorphism is SPR. In this joint work with Burguet and Luo, we prove an effective version of SPR for surface diffeomorphism. Our method is useful in getting homoclinic relations for ergodic measures of C^\infty 3-D non-singular flows.
报告人简介:杨大伟,苏州大学教授,博士生导师;长期从事微分动力系统及其遍历理论的研究,特别是在Palis稠密性猜测、SRB测度、有奇点向量场的动力学、熵理论等方面取得了一系列进展,并在Ann. Sci. Éc. Norm. Super.、J. Eur. Math. Soc.、Adv. Math.、Comm. Math. Phys.、Trans. Amer. Math. Soc.、Math. Z.、Sci. China Math.等期刊发表了多篇学术论文。杨大伟获得国家杰出青年基金、优秀青年基金以及多项面上项目资助,并参与国家自然科学基金委重大项目、科技部重点专项等项目;获得教育部自然科学一等奖(第二参与人)、江苏省自然科学三等奖(第三参与人)、江苏省特聘教授、江苏省数学成就奖、姑苏领军人才等荣誉。
报告时间: 2025年9月26日 8:00-10:00
地点: 3号楼会议室332
欢迎老师和同学们参加!
上海师范大学数理学院
2025年9月22日