组合数论系列学术报告
Correspondence among generalized Frobenius partitions via modular permutations
报告专家:朱晓杰 博士后(华东师范大学)
报告时间:2025年6月7日 星期五 下午 2:00
报告地点:上海师范大学(徐汇校区)3号楼332室
报告摘要:In 2024, Garvan, Sellers and Smoot discovered a remarkable symmetry in the families of congruences for generalized Frobenius partitions and . They also emphasized that the considerations for the general case of are important for future work. In this talk, for each we construct a vector-valued modular form for the generating functions of, and determine an equivalence relation among all . Within each equivalence class, we can identify modular transformations relating the congruences of one to that of another .
报告人简介:朱晓杰,华东师范大学博士后。其主要研究领域为数论中的模形式、Jacobi~形式、分拆数等,在~Hecke~算子理论和利用模形式理论计算~Gamma~函数的特殊点取值上取得了一定的研究成果,在~《Journal of Number Theory》~、~《Acta Arithmetica》~等期刊发表文章多篇。
上海师范大学数理学院