Proofs of Mizuno's Conjectures on Generalized Rank Two Nahm Sums

发布者:王秋枫发布时间:2025-06-07浏览次数:15

组合数论系列学术报告


Proofs of Mizuno's Conjectures on Generalized Rank Two Nahm Sums

报告专家:王博学 博士生(武汉大学)

报告时间:202567日 星期五 下午 1:00

报告地点:上海师范大学(徐汇校区)3号楼332

报告摘要:Mizuno providied 15 examples of generalized rank three Nahm sums with symmetrizer diag(1,2,2) which are conjecturally modular. Using the theory of Bailey pairs and some q-series techniques, we establish a number of triple sum Rogers--Ramanujan type identities. These identities confirm the modularity of all of Mizuno's examples except for two non-modular cases. We show that the two exceptional cases of Nahm sums are sums of modular forms of weights 0 and 1. We also prove Mizuno's conjectural modular transformation formulas for two vector-valued functions consisting of Nahm sums with symmetrizers diag(1,1,2) and diag(1,2,2).


报告人简介:王博学,武汉大学博士生,师从王六权教授,并入选武汉大学数学学院拔尖人才培养计划。其主要研究领域为q-级数与模形式,特别在Rogers-Ramanujan型恒等式的研究中取得一定进展,其研究成果已发表于《Advances in Mathematics》,《Transactions of the American Mathematical Society》等期刊。


上海师范大学数理学院