Discrete-time Infectious Disease Models

发布日期: 2019-04-19  作者:    浏览次数: 696 

主讲人:Professor Pauline van den Driessche, University of Victoria 




主讲人介绍:1964年获威尔士大学学院博士学位,自1965年担任加拿大维多利亚大学数学与统计系助理教授,至2006年获荣退教授。其主要研究领域为生物数学、矩阵分析和稳定性理论,发表学术论文近200篇,有关基本再生数计算方法的著名工作被引用2000多次。先后获得包括加拿大数学会Krieger-Nelson  Prize和国际工业与应用数学会Olga Taussky-Todd Lecturer在内的多个奖项,并于2013年成为美国工业与应用数学学会院士(SIAM  Fellow)。

内容介绍:Discrete-time infectious disease models are considered in populations governed  by different demographics. The next generation matrix method for computing the  basic reproduction number, R0, at a disease-free equilibrium is given. When  R0<1 and the demographic population dynamics are asymptotically constant,  global asymptotic stability of the disease-free equilibrium is proved by using a  Lyapunov function. The method for calculating R0 is extended to disease models  with demographic population cycles, for example, with Ricker recruitment. The  results are applied to specific diseases, including chickenpox in humans,  anthrax in herbivores and Salmon Anemia virus in fish. Joint work with A-A  Yakubu, Howard University.


  版权所有2009 ©  请勿转载和建立镜像© © 违者依法必究© © 上海师范大学数理学院