Barron Spaces and the Application to Neural Network Approximation

发布日期: 2023-10-27  作者:    浏览次数: 10 


报告题目:Barron Spaces and the Application to Neural Network Approximation

报 告 人:中国科学院数学与系统科学研究院研究员---明平兵

简    介:明平兵是中国科学院数学与系统科学研究院研究员并担任科学与工程计算国家重点实验室副主任。主要从事固体多尺度建模、多尺度算法以及机器学习的研究。他预测了石墨烯的理想强度并在Cauchy-Born法则的数学理论、拟连续体方法的稳定性方面有较为系统的工作。他在JAMS, CPAM, ARMA, JMPS,PRB等国际著名学术期刊上发表学术论文六十余篇。他曾应邀在SCADE2009The SIAM Mathematics Aspects of Materials Science 2016等会议上作大会报告。他于2014年获得国家杰出青年基金, 2019年入选第四批国家“万人计划”中青年科技创新领军人才计划,2023年获得第十五届冯康科学计算奖。


摘    要:We shall discuss various Barron type spaces arising from neural network. The relations among them will be clarified, and we also establish the relationship among the spetral Barron space and the classical function spaces such as Besov space, Sobolev space and Bessel potential space, which partly answer the question proposed by Girosi and Anzellotti in 1993. As an application, certain new approximation results for the shallow neural network and deep neural network with the Barron class as the target function space will be proved. This is a joint work with Yulei Liao (AMSS, CAS) and Yan Meng (RUC).


欢迎老师和同学们参加!



地点:数理学院3号楼115

时间:2023102710:00-11:00



 
  版权所有2009 ©  请勿转载和建立镜像© © 违者依法必究© © 上海师范大学数理学院