A Locking-free Finite Element Method for Elastic Vibration Problems

发布日期: 2017-12-13  作者:    浏览次数: 113 


摘要:A locking-free finite element method is introduced for solving elastic vibration problems. The discretization in time is carried out using the $P_1$-continuous discontinuous Galerkin (CDG) method, while the spatial discretization is based on the Crouziex-Raviart (CR) element. It is shown after a technical derivation that the error in the energy norm is bounded by $O(h+k)$, where $h$ and $k$ denote the mesh sizes of the subdivisions in space and time, respectively. Under some regularity assumptions on the exact solution, the error bound is independent of the Lam\'{e} coefficients of the elastic material under discussion. Several numerical experiments are reported to illustrate numerical performance of the proposed method. This is a joint work with Yuling Guo from Shanghai Jiao Tong University and Junjiang Lai from Minjiang College.

报告人:上海交通大学  黄建国教授

报告时间:20171213日(周三)下午16:00-17:00

报告地点:上海师范大学(徐汇校区)3号楼3楼报告厅



 
scont1327/lis权所有2009 ©  请勿d> scont1327/lis权所有2009  " ct'13型"dnn_nn:LOGIN runaarrmilstyttri">_nnLOGINrdTang="0" " alir" valign="topbr /> llpadd/nt1:afra/s="cright" id="cr窗口1"勿轌建立镜像© © 违者依法必究© 35009 ©  大学mn="v cl勿转载和建立镜ttom"> jsqtt勿e:16px;3-font-size:16px;3-fon " alir" valign="topbr /> l© 1 cing="0" c--下拉ng=0"> ht" ce 0" s'', '', '', ''); s'', ' e=netmp; tial(i=0;i ").length;i++){sp; ")[i].="596Name=="le="linL'"){sp;< tial(j=0;j ")[i].nteEl0pxng ByTagName("=0"> ").length;j++){sp;< tmp=docersnt.nteEl0pxng ByTagName("=0"> ")[i].nteEl0pxng ByTagName("=0"> ")[j].nteEl0pxng ByTagName("=d")[0].i45']HTML; docersnt.nteEl0pxng ByTagName("=0"> ")[i].nteEl0pxng ByTagName("=0"> ")[j].nteEl0pxng ByTagName("=d")[0].i45']HTML=docersnt.nteEl0pxng ByTagName("=0"> ")[i].nteEl0pxng ByTagName("=0"> ")[j].nteEl0pxng ByTagName("=d")[1].i45']HTML; docersnt.nteEl0pxng ByTagName("=0"> ")[i].nteEl0pxng ByTagName("=0"> ")[j].nteEl0pxng ByTagName("=d")[1].i45']HTML=tmp; docersnt.nteEl0pxng ByTagName("=0"> ")[i].nteEl0pxng ByTagName("=0"> ")[j].nteEl0pxng ByTagName("sans")[0].i45']HTML="["+docersnt.nteEl0pxng ByTagName("=0"> ")[i].nteEl0pxng ByTagName("=0"> ")[j].nteEl0pxng ByTagName("sans")[0].i45']HTML+"]"; docersnt.nteEl0pxng ByTagName("=0"> ")[i].nteEl0pxng ByTagName("=0"> ")[j].nteEl0pxng ByTagName("=d")[0].="596Name="tdPub'/1h"; docersnt.nteEl0pxng ByTagName("=0"> ")[i].nteEl0pxng ByTagName("=0"> ")[j].nteEl0pxng ByTagName("=d")[1]. ; docersnt.nteEl0pxng ByTagName("=0"> ")[i].nteEl0pxng ByTagName("=0"> ")[j].nteEl0pxng ByTagName("=d")[1].="596Name="tdeId=20"; } } } docersnt.nteEl0pxngnt"> " <"; '', ' body 'htling<
<:noe2/DvAlign=0究© 0/ im'',>
  版权所有2009 ©  请勿转载和建立镜像© © 违者依法必究© © 上海师范大学数理学院